Étiquette : machine learning (Page 1 of 9)

Artificial intelligence yields new antibiotic

MIT researchers used a machine-learning algorithm to identify a drug called halicin that kills many strains of bacteria. Halicin (top row) prevented the development of antibiotic resistance in E. coli, while ciprofloxacin (bottom row) did not.

“Using a machine-learning algorithm, MIT researchers have identified a powerful new antibiotic compound. In laboratory tests, the drug killed many of the world’s most problematic disease-causing bacteria, including some strains that are resistant to all known antibiotics. It also cleared infections in two different mouse models. The computer model, which can screen more than a hundred million chemical compounds in a matter of days, is designed to pick out potential antibiotics that kill bacteria using different mechanisms than those of existing drugs.”

Source : Artificial intelligence yields new antibiotic | MIT News

Can the planet really afford the exorbitant power demands of machine learning?

“To put that in context, researchers at Nvidia, the company that makes the specialised GPU processors now used in most machine-learning systems, came up with a massive natural-language model that was 24 times bigger than its predecessor and yet was only 34% better at its learning task. But here’s the really interesting bit. Training the final model took 512 V100 GPUs running continuously for 9.2 days. “Given the power requirements per card,” wrote one expert, “a back of the envelope estimate put the amount of energy used to train this model at over 3x the yearly energy consumption of the average American.” You don’t have to be Einstein to realise that machine learning can’t continue on its present path, especially given the industry’s frenetic assurances that tech giants are heading for an “AI everywhere” future.”

Source : Can the planet really afford the exorbitant power demands of machine learning? | John Naughton | Opinion | The Guardian

Emergent Tool Use from Multi-Agent Interaction

“ We’ve observed agents discovering progressively more complex tool use while playing a simple game of hide-and-seek. Through training in our new simulated hide-and-seek environment, agents build a series of six distinct strategies and counterstrategies, some of which we did not know our environment supported. The self-supervised emergent complexity in this simple environment further suggests that multi-agent co-adaptation may one day produce extremely complex and intelligent behavior.”

Source : Emergent Tool Use from Multi-Agent Interaction

Better Language Models and Their Implications

Really ?

“We’ve trained a large-scale unsupervised language model which generates coherent paragraphs of text, achieves state-of-the-art performance on many language modeling benchmarks, and performs rudimentary reading comprehension, machine translation, question answering, and summarization — all without task-specific training.”

Source : Better Language Models and Their Implications

Google is fixing gender bias in its Translate service

“Historically, it has provided only one translation for a query, even if the translation could have either a feminine or masculine form. So when the model produced one translation, it inadvertently replicated gender biases that already existed. For example: it would skew masculine for words like “strong” or “doctor,” and feminine for other words, like “nurse” or “beautiful.”

Source : Google is fixing gender bias in its Translate service

Rosetta: Understanding text in images and videos with machine learning

“With a unified model for a large number of languages, we run the risk of being mediocre for each language, which makes the problem challenging. Moreover, it’s difficult to get human-annotated data for many of the languages. Although SynthText has been helpful as a way to bootstrap training, it’s not yet a replacement for human-annotated data sets. We are therefore exploring ways to bridge the domain gap between our synthetic engine and real-world distribution of text on images”.

Source : Rosetta: Understanding text in images and videos with machine learning – Facebook Code

This robot uses AI to find Waldo, thereby ruining Where’s Waldo

“Built by creative agency Redpepper, There’s Waldo zeroes in and finds Waldo with a sniper-like accuracy. The metal robotic arm is a Raspberry Pi-controlled uArm Swift Pro which is equipped with a Vision Camera Kit that allows for facial recognition. The camera takes a photo of the page, which then uses OpenCV to find the possible Waldo faces in the photo. The faces are then sent to be analyzed by Google’s AutoML Vision service, which has been trained on photos of Waldo. If the robot determines a match with 95 percent confidence or higher, it’ll point to all the Waldos it can find on the page”.

Source : This robot uses AI to find Waldo, thereby ruining Where’s Waldo – The Verge

« Older posts

© 2020 no-Flux

Theme by Anders NorenUp ↑