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Alphabet - Waymo - 2022

+ GPT-4

Les enfants ont finalement rangé leur chambre a la demande de leurs parents, car ils
craignaient d'étre punis. A quoi se référe "ils" ?

"lIs" se réféere aux "enfants".

Open Al - ChatGPT 4 * * Midjourney - 2022



Al eftect ?

Problématique de la qualification de l'intelligence

La reconnaissance de caracteres (Lecun - Tri postal - 1989)
Les échecs (1BM Deep Blue - Kasparov - 1997)

'érudition - Jeopardy (IBM Watson - Jeopardy - 2011)

Le Go (DeepMind - AlphaGo Lee - 2016)

La compréhension d'un texte ? (Alibaba - 2018)

La traduction ? (DeepL - 2017)

L'art ? (Dall-E - 2021, Midjourney - 2022)

La conduite automobile ? (Waymo - 2022)

Le dialogue généraliste ? (ChatGPT-2022)

La désambiguisation lexicale ? (GPT3.5-2022)

Boris Beaude - 01/10/2023 - CC-BY-SA



+; GPT-4

Les enfants ont finalement rangé leur chambre a la demande de leurs parents, car ils
craignaient d'étre punis. A quoi se référe "ils" ?

"lIs" se référe aux "enfants". O & &P

Exemple de désambiguisation lexicale

Boris Beaude - 01/10/2023 - CC-BY-SA



+! GPT-4

Les enfants ont finalement rangé leur chambre a la demande de leurs parents, car ils
craignaient d'étre punis. A quoi se référe "ils" ?

"Ils" se référe aux "enfants". 0 & &GP

4 Default (GPT-3.5)

Les enfants ont finalement rangé leur chambre a la demande de leurs parents, car ils
craignaient d'étre punis. A quoi se référe "ils" ?

Dans la phrase "Les enfants ont finalement rangé leur chambre a la demande de leurs 0 & &
parents, car ils craignaient d'étre punis,” le pronom "ils" se référe aux enfants. En d'autres
termes, les enfants ont rangé leur chambre parce qu'ils craignaient d'étre punis par leurs
parents s'ils ne le faisaient pas. Le pronom "ils" renvoie aux "enfants" mentionnés

précédemment dans la phrase.

|s this conversation helpful so far? 9 CP

Exemple de désambiguisation lexicale

Boris Beaude - 01/10/2023 - CC-BY-SA



+ GPT-4

Les enfants ont finalement rangé leur chambre a la demande de leurs parents, car ils
craignaient d'étre punis. A quoi se référe "ils" ?

"lIs" se réféere aux "enfants".

4 Default (GPT-3.5)

Les enfants ont finalement rangé leur chambre a la demande de leurs parents, car ils
craignaient d'étre punis. A quoi se référe "ils" ?

Dans la phrase "Les enfants ont finalement rangé leur chambre a la demande de leurs

parents, car ils craignaient d'étre punis,” le pronom "ils" se référe aux enfants. En d'autres
termes, les enfants ont rangé leur chambre parce gu'ils craignaient d'étre punis par leurs
parents s'ils ne le faisaient pas. Le pronom "ils" renvoie aux "enfants" mentionnés

précédemment dans la phrase.

s this conversation helpful so far? 3 CP

GPT4All v2.5.1

Mistral OpenOrca

. Les enfants ont finalement rangé leur chambre a la demande de leurs parents, car ils craignaient d'étre punis. A quoi se référe "ils" ?

lls se réferent aux enfants qui ont rangé leur chambre.

Exemple de désambiguisation lexicale

Boris Beaude - 01/10/2023 - CC-BY-SA



< Spaces -“@ zephyr-chat © O like % Running on A100

Analyse détaillée .
1 analyse AR Zephyr /B New Chat

Beta Les enfants ont finalement rangé leur chambre a la demande de leurs parents, car ils

Les dét. le au masc./fém. plur. craignaient d'étre punis. A quoi se référe "ils" ?
f: détermine le nom enfants

enfants n. enfant au masc./fém. plur. A quoi se référe "ils" ?
f: sujet de ont ... rangé

;’“t ‘f’lF”f"'age avot’.",'”d' pres,"d3e plur. s | , , Dans ce contexte, "ils" désigne les enfants qui ont obéi aux demandes de leurs parents
. duxiliaire au participe passe ae ranger, servant a rormer |le passe compose

. : et ont rangé leur chambre. Il s'agit du sujet de I'énoncé en frangais, alors que le verbe
finalement adv. finalement

f: complément adverbial de ont ... rangé (ranger) est conjugué au présent par rapport au temps indiqué dans I'énoncé ("ont").

L CALCII L (2o (LR h IR El En résumé, "ils" fait référence aux enfants mentionnés précédemment, qui ont regu
f: noyau de la proposition
0 G P s e une menace de punishment si ils ne rangeaient pas leur chambre.

f: détermine le nom chambre

chambre n. chambre au fém. sing.

f: complément d'objet direct de ont ... rangé

a prép.a

f: introduit le groupe nominal dont demande est le noyau

la dét. /e au fém. sing.
f: détermine le nom demande GPT4All v2.5.1

demande n. demande au fém. sing.
f: complément adverbial de ont ... rangé

de prép. de

: ) , Mistral OpenOrca
f: introduit le groupe nominal dont parents est le noyau P

leurs dét. leur au masc. plur.
f: détermine le nom parents

parents n. parent au masc. plur.

) . Les enfants ont finalement rangé leur chambre a la demande de leurs parents, car ils craignaient d'étre punis. A quoi se référe "ils" ?
f: complément du nom demande

, virg.

J: indique une pause breve a l'oral lls se réferent aux enfants qui ont rangé leur chambre.

car conjonction de coordination car
f: introduit la proposition dont craignaient est le noyau

ils pron. pers. il au masc. plur.
f: sujet de craignaient; apparemment mis pour parents

craignaient v. craindre, ind. imparf., 3e plur.
f: noyau de la proposition; complément adverbial de ont ... rangé

d’' prép. de (élidée) GPT4All v2.51
f: introduit la proposition dont &tre punis est le noyau

étre auxiliaire étre, inf. prés.

: auxiliaire du participe passé de punir, servant a former le passif ou a exprimer |'état .
f P Pep P ’ P P Mistral OpenOrca

punis V. punir, part. passé, masc. plur.
f: noyau de la prop. infinitive; complément d'objet direct de craignaient

point assertif
f: marque la fin de la phrase

. Les enfants ont finalement rangé leur chambre a la demande de leurs parents, car ils craignaient d'étre punis. A quoi se référe "ils" ?

19 mots, 0 détection

Druide - Antidote - 2023

Les enfants font référence aux personnes agées de moins de 18 ans qui viennent dans cette famille et vivent avec les parents. lls sont responsables
de la saleté et du désordre qui regne dans leur chambre, ce qui a provoqué l'intervention des parents pour qu'ils la rangent.

Boris Beaude - 01/10/2023 - CC-BY-SA
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Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

Language, common sense, and the Winograd schema challenge

Jacob Browning *, Yann LeCun

NYU, United States of America

ARTICLE INFO ABSTRACT
Article history: Since the 1950s, philosophers and Al researchers have held that disambiguating natural
Received 21 September 2022 language sentences depended on common sense. In 2012, the Winograd Schema Challenge

Received in revised form 6 September 2023
Accepted 2 October 2023
Available online xxxx

was established to evaluate the common-sense reasoning abilities of a machine by testing
its ability to disambiguate sentences. The designers argued only a system capable of
“thinking in the full-bodied sense” would be able to pass the test. However, by 2023,

Keywords: the original authors concede the test has been soundly defeated by large language
Winograd schema challenge models which still seem to lack common sense of full-bodied thinking. In this paper,
Artificial intelligence we argue that disambiguating sentences only seemed like a good test of common-sense
Common-sense based on a certain picture of the relationship between linguistic comprehension and
Disambiguation semantic knowledge—one typically associated with the early computational theory of
Symbolic Al mind and Symbolic Al If this picture is rejected, as it is by most LLM researchers, then

Large language models disambiguation ceases to look like a comprehensive test of common-sense and instead

appear only to test linguistic competence. The upshot is that any linguistic test, not just
disambiguation, is unlikely to tell us much about common sense or genuine intelligence.
© 2023 Elsevier B.V. All rights reserved.

“We can describe the process of understanding language as a conversion from a string of sounds or letters to an inter-
nal representation of ‘meaning.’ In order to do this, a language-understanding system must have some formal way to
express its knowledge of a subject and must be able to represent the ‘meaning’ of a sentence in this formalism. The
formalism must be structured so the system can use its knowledge in conjunction with a problem-solving system to
make deductions, accept new information, answer questions, and interpret commands.” Terry Winograd [63]: 23-4

1. Introduction

What makes something a significant accomplishment in artificial intelligence? There have been many proposed cognitive
abilities taken to require human-like intelligence which would be a good test for Al, such as successful chess playing ([45];
[20]). The assumption was that these abilities could not be accomplished without possessing the genuine article: real,
bonafide human-like intelligence. But when Al systems accomplish these feats—as with Deep Blue’s victory in chess over
Garry Kasparov in 1997—there is a feeling by many that the accomplishment does not show us anything interesting about
intelligence [17]. This situation is so common and pervasive it has its own name, “the Al effect”: when a machine cannot
do a task, it is assumed the task requires intelligence; when a machine can do it, the task is no longer regarded as requiring
intelligence.

* Corresponding author.
E-mail addresses: jacob.browning@nyu.edu (J. Browning), yl22@nyu.edu (Y. LeCun).

https://doi.org/10.1016/j.artint.2023.104031
0004-3702/© 2023 Elsevier B.V. All rights reserved.

Please cite this article as: ]J. Browning and Y. LeCun, Language, common sense, and the Winograd schema challenge, Artificial Intelligence,
https://doi.org/10.1016/j.artint.2023.104031

Winograd schema challenge

Jacob Browning, Yann LeCun, Language, common sense, and the Winograd schema challenge

v Spaces =@

Zephyr 7B
Beta

New Chat

A quoi se référe "ils" ?

zephyr-chat © O like % Running on A200 i

Les enfants ont finalement rangé leur chambre a la demande de leurs parents, car ils
craignaient d'étre punis. A quoi se référe "ils" ?

Dans ce contexte, "ils" désigne les enfants qui ont obéi aux demandes de leurs parents
et ont rangé leur chambre. Il s'agit du sujet de I'énoncé en frangais, alors que le verbe
(ranger) est conjugué au présent par rapport au temps indiqué dans I'énoncé ("ont").
En résumé, "ils" fait référence aux enfants mentionnés précédemment, qui ont regu

une menace de punishment si ils ne rangeaient pas leur chambre.

GPT4Allv2.5.1

Mistral OpenOrca

. Les enfants ont finalement rangé leur chambre a la demande de leurs parents, car ils craignaient d'étre punis. A quoi se référe "ils" ?

lls se réferent aux enfants qui ont rangé leur chambre.

GPT4All v2.5.1

Mistral OpenOrca

. Les enfants ont finalement rangé leur chambre a la demande de leurs parents, car ils craignaient d'étre punis. A quoi se référe "ils" ?

Les enfants font référence aux personnes agées de moins de 18 ans qui viennent dans cette famille et vivent avec les parents. lls sont responsables
de la saleté et du désordre qui regne dans leur chambre, ce qui a provoqué l'intervention des parents pour qu'ils la rangent.

, Artificial Intelligence, 6 Octobre 2023 & Boris Beaude - 01/10/2023 - CC-BY-SA
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.ﬂg@' A reminder that people can disagree about important things but still be
good friends.

Yann LeCun - Post sur son compte Twitter - 21 octobre 2023
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Pause Giant Al Experiments: An Open
Letter

We call on all Al labs to immediately pause for at least 6 months the
training of Al systems more powerful than GPT-4.

Signatures

33711

Add your
signature

Published
March 22, 2023

Signatories

Yoshua Bengio, Founder and Scientific Director at Mila, Turing Prize winner and professor

at University of Montreal

Stuart Russell, Berkeley, Professor of Computer Science, director of the Center for
Intelligent Systems, and co-author of the standard textbook “Artificial Intelligence: a

Modern Approach”

Elon Musk, CEO of SpaceX, Tesla & Twitter

Steve Wozniak, Co-founder, Apple

Yuval Noah Harari, Author and Professor, Hebrew University of Jerusalem.

Emad Mostaque, CEO, Stability Al

Andrew Yang, Forward Party, Co-Chair, Presidential Candidate 2020, NYT Bestselling

Mars 2023

Geoffrey Hinton démissionne de Google Al

é’\)\ Center for
\\/9 Al Safety

Statement on Al Risk

Al experts and public figures express their concern about Al risk.

Contents Al experts, journalists, policymakers, and the public are increasingly

Statement discussing a broad spectrum of important and urgent risks from Al Even
so, it can be difficult to voice concerns about some of advanced AI's most

Signatories severe risks. The succinct statement below aims to overcome this obstacle

Sign the statement and open up discussion. It is also meant to create common knowledge of
the growing number of experts and public figures who also take some of

advanced AD’s most severe risks seriously.

Mitigating the risk of extinction from
Al should be a global priority
alongside other societal-scale risks
such as pandemics and nuclear war.

Signatories:

Al Scientists Other Notable Figures

Geoffrey Hinton
Emeritus Professor of Computer Science, University of Toronto

Yoshua Bengio
Professor of Computer Science, U. Montreal / Mila

Demis Hassabis
CEO, Google DeepMind

Sam Altman
CEO, OpenAl

Dario Amodei
CEO, Anthropic

Mai, 2023

Boris Beaude - 01/10/2023 - CC-BY-SA

Managing Al
Risks in an Era of
Rapid Progress
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Policy supplement

In this short consensus paper, we outline risks from

upcoming, advanced Al systems. We examine large-scale

soctal harms and malicious uses, as well as an irreversible

loss of human control over autonomous Al systems. In light

of rapid and continuing Al progress, we propose urgent

priorities for AI R&D and governance.
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Deep learning

Yann LeCun"?, Yoshua Bengio® & Geoffrey Hinton*®

Deep learning allows computational models that are composed of multiple processing layers to learn representations of
data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech rec-
ognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep
learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine
should change its internal parameters that are used to compute the representation in each layer from the representation in
the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and
audio, whereas recurrent nets have shone light on sequential data such as text and speech.

achine-learning technology powers many aspects of modern
M society: from web searches to content filtering on social net-

works to recommendations on e-commerce websites, and
it is increasingly present in consumer products such as cameras and
smartphones. Machine-learning systems are used to identify objects
in images, transcribe speech into text, match news items, posts or
products with users’ interests, and select relevant results of search.
Increasingly, these applications make use of a class of techniques called
deep learning.

Conventional machine-learning techniques were limited in their
ability to process natural data in their raw form. For decades, con-
structing a pattern-recognition or machine-learning system required
careful engineering and considerable domain expertise to design a fea-
ture extractor that transformed the raw data (such as the pixel values
of an image) into a suitable internal representation or feature vector
from which the learning subsystem, often a classifier, could detect or
classify patterns in the input.

Representation learning is a set of methods that allows a machine to
be fed with raw data and to automatically discover the representations
needed for detection or classification. Deep-learning methods are
representation-learning methods with multiple levels of representa-
tion, obtained by composing simple but non-linear modules that each
transform the representation at one level (starting with the raw input)
into a representation at a higher, slightly more abstract level. With the
composition of enough such transformations, very complex functions
can be learned. For classification tasks, higher layers of representation
amplify aspects of the input that are important for discrimination and
suppress irrelevant variations. An image, for example, comes in the
form of an array of pixel values, and the learned features in the first
layer of representation typically represent the presence or absence of
edges at particular orientations and locations in the image. The second
layer typically detects motifs by spotting particular arrangements of
edges, regardless of small variations in the edge positions. The third
layer may assemble motifs into larger combinations that correspond
to parts of familiar objects, and subsequent layers would detect objects
as combinations of these parts. The key aspect of deep learning is that
these layers of features are not designed by human engineers: they
are learned from data using a general-purpose learning procedure.

Deep learning is making major advances in solving problems that
have resisted the best attempts of the artificial intelligence commu-
nity for many years. It has turned out to be very good at discovering

intricate structures in high-dimensional data and is therefore applica-
ble to many domains of science, business and government. In addition
to beating records in image recognition'™ and speech recognition®”, it
has beaten other machine-learning techniques at predicting the activ-
ity of potential drug molecules®, analysing particle accelerator data’",
reconstructing brain circuits", and predicting the effects of mutations
in non-coding DNA on gene expression and disease'"’. Perhaps more
surprisingly, deep learning has produced extremely promising results
for various tasks in natural language understanding'®, particularly
topic classification, sentiment analysis, question answering'® and lan-
guage translation'®".

We think that deep learning will have many more successes in the
near future because it requires very little engineering by hand, so it
can easily take advantage of increases in the amount of available com-
putation and data. New learning algorithms and architectures that are
currently being developed for deep neural networks will only acceler-
ate this progress.

Supervised learning

The most common form of machine learning, deep or not, is super-
vised learning. Imagine that we want to build a system that can classify
images as containing, say, a house, a car, a person or a pet. We first
collect a large data set of images of houses, cars, people and pets, each
labelled with its category. During training, the machine is shown an
image and produces an output in the form of a vector of scores, one
for each category. We want the desired category to have the highest
score of all categories, but this is unlikely to happen before training.
We compute an objective function that measures the error (or dis-
tance) between the output scores and the desired pattern of scores. The
machine then modifies its internal adjustable parameters to reduce
this error. These adjustable parameters, often called weights, are real
numbers that can be seen as ‘knobs’ that define the input-output func-
tion of the machine. In a typical deep-learning system, there may be
hundreds of millions of these adjustable weights, and hundreds of
millions of labelled examples with which to train the machine.

To properly adjust the weight vector, the learning algorithm com-
putes a gradient vector that, for each weight, indicates by what amount
the error would increase or decrease if the weight were increased by a
tiny amount. The weight vector is then adjusted in the opposite direc-
tion to the gradient vector.

The objective function, averaged over all the training examples, can

!Facebook Al Research, 770 Broadway, New York, New York 10003 USA. 2New York University, 715 Broadway, New York, New York 10003, USA. *Department of Computer Science and Operations
Research Université de Montréal, Pavillon André-Aisenstadt, PO Box 6128 Centre-Ville STN Montréal, Quebec H3C 3J7, Canada. *Google, 1600 Amphitheatre Parkway, Mountain View, California
94043, USA.°Department of Computer Science, University of Toronto, 6 King’s College Road, Toronto, Ontario M5S 3G4, Canada.

436 | NATURE | VOL 521 | 28 MAY 2015

© 2015 Macmillan Publishers Limited. All rights reserved

2015

Yann LeCun, Yoshua Bengio & Geoffrey Hinton, Deep learning, Nature 2015 (vol.521), pp. 436-444.
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Dominique Cardon, Jean-Philippe Cointet, Antoine Maziéres, La revanche des neurones, Réseaux 2018/5 (n° 211), pp. 173 a 220.



~Holland

Connexionniste

Symbolique

Dominique Cardon, Jean-Philippe Cointet, Antoine Maziéres, La revanche des neurones, Réseaux 2018/5 (n° 211), pp. 173 a 220.



Principes du Deep Learning



Quelles nouveauteés ?

* Puissance de traitement - 'augmentation exponentielle des capacités
e Donneées - 'abondance de textes, d'images et de vidéos
o Algorithmes - le passage de l'expertise a l'expérience

 Modeles économiques - |a tentation de l'ouverture

Boris Beaude - 01/10/2023 - CC-BY-SA



L.a puissance de calcul
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https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
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NVIDIA Technical Blog, NVIDIA Ampere Architecture In-Depth, 14 mai 2020


https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

NVIDIA.

NVIDIA Technical Blog, NVIDIA Ampere Architecture In-Depth, 14 mai 2020 & Google, TPUv4, 14 décembre 2022


https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://cloud.google.com/blog/products/infrastructure/aiml-to-automate-infrastructure-configuration?hl=en
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https://www.youtube.com/watch?v=FsxthdQ_sL4

Moore’s Law: The number of transistors on microchips doubles every two years (oWl

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing — such as processing speed or the price of computers.

Transistor count
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Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip was first introduced
OurWorldinData.org - Research and data to make progress against the world’s largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.



Single-Chip Inference Performance - 1000X in 10 years
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De la loi de Moore a la loi de Huang

NVIDIA, Heeding Huang's Law, 29 septembre 2023


https://blogs.nvidia.com/blog/2023/09/29/huangs-law-dally-hot-chips/

Shown on the vertical axis is the training computation Minerva: built in 2022 and trained on 2.7 billion petaFLOP

that was used to train the Al systems. Minerva can solve complex mathematical problems at the college level.
. PaLM: built in 2022 and trained on 2.5 billion petaFLOP
10 billion petaFLOP PalM can generate high-quality text, explain some jokes, cause & effect, and more. \
A
~Computation is measured in floating point operations (FLOP). GPT-3:2020; 314 million petaFLOP
One FLOP is equivalent to one addition, subtraction, GPT-3 can produce high-quality text that is .‘
multiplication, or division of two decimal numbers. often indistinguishable from human writing.
. DALL-E: 2021; 47 million petaFLOP —_ @ .’
, 100 million petaFLOP DALL-E can generate high-quality images from written descriptions. ~ @ — b.
[ The datais shown on a logarithmic scale, so that - [
| it : ' ) NEO: 2021; 1.1 million petaFLOP—__
l“ if;(g'[ggsg Pn%trrlgirtliﬂe E?)rtr?equ)t(itc::\ shows a 100-fold Recommendation systems like Facebook’s NEO determine what you see on T
\ & P ' your social media feed, online shopping, streaming services, and more. o °
. _,e®
1 million petaFLOP AlphaGo: 2016; 1.9 million petafLOP———  o_ %"
AlphaGo defeated 18-time champion Lee Sedol at the ancient and highly o ~. '
complex board game Go. The best Go players are no longer human. ) °®
AlphaFold: 2020; 100,000 petaFLOP — '*“';;‘ ® °
10,000 petaFLOP AlphaFold was a major advance toward solving the protein-folding problem in biology. '..0/ : ®
MuZero: 2019; 48,000 petaFLOP— ' 4 8
MuZero is a single system that achieved superhuman performance at Go, e®®
chess, and shogi (Japanese chess) — all without ever being told the rules. o ® °
100 petaFLOP AlexNet: 2012; 470 petaFLOP ° e ° ’ ®
A pivotal early “deep learning” system, or neural network with many layers, that [
could recognize images of objects such as dogs and cars at near-human level.
1 petaFLOP = 1 quadrillion FLOP NPLM o °
Py o
Decision tree Q@ ®
o
10 trillion FLOP TD-Gammon: 1992; 18 trillion FLOP @ LSTM o o
TD-Gammon learned to play backgammon at a high
level, just below the top human players of the time. ® LeNet-5
T ® RNN for speech
100 billion FLOP
NetTalk: 1987; 81 billion FLOP @ @ ALVINN
NetTalk was able to learn to pronounce some English text by being given ® ZipCNN
text as input and matching it to phonetic transcriptions. Among its many
limitations, it did not perform the visual recognition of the text itself.
1 billion FLOP ‘Pandemonium (Morse) ® System 11
Samuel Neural Checkers
A\ ® Back-propagation
Neocognitron: 1980; 228 million FLOP
10 million FLOP A precursor of modern vision systems. It could recognize
handwritten Japanese characters and a few other patterns.
® Fuzzy NN
® Perceptron Mark I: builtin 1957/58; 695,000 FLOP
100.000 FLOP Regarded as the first artificial neural network, it could visually distinguish cards marked on the left side
’ from those marked on the right, but it could not learn to recognize many other types of patterns.
® ADALINE: built in 1960 and trained on around 92,900 FLOP
An early single-layer artificial neural network.
1,000 FLOP
® Theseus: built in 1950 and trained on around 40 floating point operations (FLOP)
10 FLOP Theseus was a small robotic mouse, developed by Claude Shannon,
that could navigate a simple maze and remember its course.
Pre Deep Learning Era Deep Learning Era
The first electronic computers Training computation grew in line with Moore’s law, doubling roughly every 20 months. Increases in training computation
were developed in the 1940s accelerated, doubling roughly

every 6 months.

1940 1950 K 1960 1970 1980 1990 A\ 2000 2010 2020

Charlie Giattino, Edouard Mathieu and Max Roser, The rise of artifical intelligence over the last 8 decades, 6 décembre 2022


https://ourworldindata.org/brief-history-of-ai
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L’encyclopédie libre
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Italiano X
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LAION

Projects
Team
Blog
Notes
Press
About
FAQ

Donations

Privacy Policy

Dataset Requests

Impressum

LAION @

Large-scale Artificial Intelligence Open Network

TRULY OPEN Al. 100% NON-PROFIT. 100% FREE.

LAION, as a non-profit organization, provides datasets, tools and
models to liberate machine learning research. By doing so, we
encourage open public education and a more environment-friendly
use of resources by reusing existing datasets and models.

A CERN FOR OPEN SOURCE LARGE-SCALE Al RESEARCH!

Sign our petition for Open Source Al research!

Join our community on discord!

LAION-400M

An open dataset containing 400
million English image-text
pairs.

LAION-3B

A dataset consisting of 5.85
billion multilingual CLIP-
filtered image-text pairs.

Clip H/14

The largest CLIP (Contrastive
Language-Image Pre-training)
vision transformer model.

LAION-Aesthetics

A subset of LAION-5B filtered
by a model trained to score
aesthetically pleasing images.




Looking to work on tasks? Signin as a Worker | Learn more

amazon mechanical turk Overview Features Pricing Help Developer Resources Customers

Amazon Mechanical Turk

Access a global, on-demand, 24x7 workforce

Get started with Amazon Mechanical Turk

Looking for data labeling solutions to power Machine Learning models?

Amazon SageMaker Ground Truth allows you to easily build and manage your own data labeling workflows and workforce. Learn More »

Or, use Ground Truth Plus, a turnkey data labeling service that provides an expert workforce and manages it on your behalf.
Amazon Mechanical Turk is accessible through both Ground Truth and Ground Truth Plus.

Amazon Mechanical Turk (MTurk) is a crowdsourcing marketplace that makes it easier for individuals and businesses to outsource their processes and jobs
to a distributed workforce who can perform these tasks virtually. This could include anything from conducting simple data validation and research to more
subjective tasks like survey participation, content moderation, and more. MTurk enables companies to harness the collective intelligence, skills, and insights
from a global workforce to streamline business processes, augment data collection and analysis, and accelerate machine learning development.

While technology continues to improve, there are still many things that human beings can do much more effectively than computers, such as moderating
content, performing data deduplication, or research. Traditionally, tasks like this have been accomplished by hiring a large temporary workforce, which is time

consuming, expensive and difficult to scale, or have gone undone. Crowdsourcing is a good way to break down a manual, time-consuming project into

smaller, more manageable tasks to be completed by distributed workers over the Internet (also known as ‘microtasks’).




Produits Industries Etudes De Cas Ressources A Propos De Nous Demander Une Démo

La nouvelle ere du
developpement de I’lA

Relevez le potentiel de votre modele grace a une qualité de
données de pointe. La plateforme integrée d’apprentissage
machine Sama, dotée d’une validation avec intervention humaine,
simplifie le développement de I'lA, ce qui permet d’obtenir plus
rapidement des résultats precis et d’accelérer la mise sur le
marchée.

Demandez une déemo

Ces grandes entreprises mondiales font confiance a Sama

Google walmart:jc gettyimages BB Microsoft  \JA\S/\




Sans données ?
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— AlphaGo Zero 40 blocks
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--- AlphaGo Lee !
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(1) AlphaGo Fan is the previously published program that played against Fan Hui in October 2015. This program was distributed over many machines using 176 GPUs.
(2) AlphaGo Lee is the program that defeated Lee Sedol 4-1 in March 2016. It was previously unpublished, but is similar in most regards to AlphaGo Fan - 48 TPUs, rather than GPUs

(3) AlphaGo Master is the program that defeated top human players by 60-0 in January 2017 - initialized by supervised learning from human data + reinforcement

(4) AlphaGo Zero learns from self-play reinforcement learning, with no human supervision in April 2017. It uses just a single machine in the Google Cloud with 4 TPUs

(x) AlphaZero is a more generalized variant of the AlphaGo Zero (AGZ) algorithm, and is able to play shogi and chess as well as Go.
- Defeated Stockfish 8 after 9 hours of training.
- Defeated AlphaGo Zero after 34 hours of training.

Maitriser le jeu de go sans ’experience humaine

David Silver et al., Mastering the game of Go without human knowledge, 7 avril / 18 octobre 2017, Nature



The training pipeline for AlphaGo Zero consists of three stages, executed in pardllel KWH AT IS A ‘GAME STATE' )

" SELF PLAY ) RETRAINNETWORK [ EVALUATENETWORK | ... oo e

' .. ' e . . . black’s st
Create a ‘training set Optimise the network weights Test to see if the new network is stronger acks stones
The best curnent player plays 25,000 games against itself A TRAINING LOOP Play 400 games between the latest neural network and the current best .ond for the previous |
neural network 7 time periods

See MCTS section to understand how AlphaGo Zero selects each move Sample @ mini-batch of 2048 positions from the last 500.000 games

At each move, the following information is stored 'Sdn:';otnh:;xg:xmﬂ::j D::pf:l:::am:;:ﬁ Architecture’) nB:::: oﬁ?;::}mﬂi?nﬁzf fheir moves, with their respecfive neurdl S:;f:::im of
Loss function
Compares predictions from the neural network with the search probabittes and actual winner Latest player must win 55% of games to be declared the new best player .and for the previous
7 time periods

The game state The search probabilities The winner

Allif black to play
n ! p Cross-eaircpy T[« All O if white to play
PREDICTIONS + ACTUAL
v Mean-squared error Y .
(see "What is a Game (from the MCTS) (+1if this player won, -1if Regularisation ‘ \
State section’) this player lost - added once

k ihe gome hos frished) ‘) k At eveny 1,000 fraiting lope, evlue fhe nefwork ‘) L \\j/ | J K This stack is the input to the deep neural network J
K'I'HE DEEP NEURAL NETWORK ARCHITECTURE A FMONTE CARLO TREE SEARCH (MCTS) h

How AlphaGo Zero assesses new positions How AlphaGo Zero chooses its next move . o
First, run the following simulation
i The current state (s!
The pOIlcy head tgane sote @ Each potential action from a game ] 6 O O -l-imes
. 0 . , R aad
The network learns “tabula rasa’ (from a blank slate) 1919 +1 (for poss) stafe fores four numbers:
" . . move logi probabities The oction thot imes ac Start at the root node of the tree (th t tate)
At no point is the network trained using human knowledge or expert moves N e . oy N Thoriber o el s art at the root node of the tree (the current game state
 comecteciayer W The fotal vakue of the next state 1. Choose the action that maximises...
The ne+w0r‘k \ Q The mean value of the next state + U
HEE B-En
The value head hehos iy Rectifer non-ineanty J P The prionrobobity o slchng / N
.- . .. actiona increases if an action hasn't been
game value for current poyer [ -~ -~ .| ==y~ N ... - 4 The mean value of explored much, relative to the other
1.1 Batch normaiisation Gome stafe fedinfo the next stafe actions, onif the prion probabitty of
$anh non-linearity ‘ ] ..... .- neurd network - the action is high
1] scalar
Fully connected layen 2 “W‘ZTS')‘“‘ fitfers [ | Early on in the simulation, U dominates (more exploration),
eenesraes oo I but later; Q is more important (less exploration)
N
EE N-EE put [
Rectifier non-linearity J
EE U -EE 2. Continue until a leaf node is reached
_ The game state of the leaf node is passed into the neural
Hidden layen size 256 A residual | ayer network, which outputs predictions about two things:
- ove probabilities
Fully connected layer .. . .- v P=0.2 ) p M babil
Rectifier non-linearity _/ .......................... v
HEE 2 BN Value of the state (for the current player)
Rectifier non-linearity J .. . ..
. The move probabilities p are attached to the new feasible
Batch normalisation .. é - The curvent game state (s) actions from the leaf node
] EEEEE-EE 3 o [P ]
g N ’ W=5.4+0.2 -
1 convolutional fitter - - .. e
() EE 7 -EE Q=5.6/1 2 e 3. Backup previous edges
I o » P=0.5 Each edge that was traversed to get to the leaf node is updated
Batch normalisation A follows:
froct D EEETE BN as follows:
N=U+ 1 N— N+
We2.5+0.2 Acton voke W—=W+y
. 256 convolutional .
A convolutional layer fters (33 sz.g 2 5 Q= W/N
EN N-Em ’
Rectifier non-linearity J
1 HE u-EE Rectifler non-inearsty _/ .then select a move The aurvent gome st (5 Other pom1's
Batch normalisation After 1,600 simulations, the move can either be chosen: - The sub-tree from the chosen move is retained
AEETE-Em Batch normalisation Deterministical (for compefiive play N=800 N=600 for calculating subsequent moves
] Choose the action from the current state with greatest N N=200 - The rest of the tree is discarded
256 convolutional 256 convolutional
fiters (3x3) fiters (3x3) Stochastically (for exploratory play)
I Choose the action from the current state from the distribution
1
/4 Choose this move if deterministic
Toput @ Tnput — | Tc ~ N7 IF stochastic, sample from categorical istribution
Input: The game TU vithprobobidties (0.5, 0,125, 0.375)

K where T is a temperature parameter controling exploration

k state (see below) J

David Foster, How to build your own AlphaZero Al using Python and Keras, 26 janvier 2018, Medium




Les algorithmes



— Calculateur —

Entrées —p
1 —— Sorties

Programme ——»

Entrées ——p

Sorties ——p

— Calculateur =

2 —» Programme

Machine hypothetico-deductive (1) et machine inductive (2)

Dominique Cardon, Jean-Philippe Cointet, Antoine Maziéres, La revanche des neurones, Réseaux 2018/5 (n° 211), pp. 173 a 220.



Entrées
Poids

Somme Fonction d’activation

Modele formel d’un neurone artificiel a seuil binaire

Dominique Cardon, Jean-Philippe Cointet, Antoine Maziéres, La revanche des neurones, Réseaux 2018/5 (n° 211), pp. 173 a 220.



Entrées

Somme Fonction d’activation

Sl Couche d’entrée Couche cachée Couche de sortie

Entrée 1 ‘

7 el e 6
/0 ) Rétro-propagation
A . ’ -. de 'erreur

‘\“ :

- Entrée 3 .‘ " G P,
| Q‘ =
AN N
N\ )‘

S Entrée 4 ‘(' \

Entrée 5 P
L

TITT

Fonctionnement d’un réeseau de neurones simple

Dominique Cardon, Jean-Philippe Cointet, Antoine Maziéres, La revanche des neurones, Réseaux 2018/5 (n° 211), pp. 173 a 220.
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Réseau de neurones multicouches et rétropropagation

Yann LeCun, Yoshua Bengio & Geoffrey Hinton, Deep learning, Nature 2015 (vol.521), pp. 436-444.
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DATA

Which dataset do
you want to use?
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Ratio of training to
test data: 50%
@

Noise: 0

Batch size: 10
@

REGENERATE

Epoch

000,357

FEATURES

Which properties do
you want to feed in?
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OUTPUT

Test loss 0.001
Training loss 0.000
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[J Show test data

Tensorflow playground - Neural Network in Your Browser

https://playground.tensorflow.org/
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Efficient Estimation of Word Representations in Attention Is All You Need
Vector Space

Tomas Mikolov Kai Chen
Gooele Inc.. M . View. CA Gooele Ine.. M . View. CA Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
008 Ie ne., Vountain View, 008 ? ne., Mountain View, Google Brain Google Brain Google Research Google Research
tmikolov@google.com kaichenl@google.com avaswani@google.com noam@google.com nikip@google.com usz@google.com
Greg Corrédo _ Jefirey Dean Llion Jones* Aidan N. Gomez* Lukasz Kaiser*
Google Inc., Mountain View, CA Google Inc., Mountain View, CA Google Research University of Toronto Google Brain
gcorrado@google.com jeff@google.com 1llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com
Ilia Polosukhin*
Abstract illia.polosukhin@gmail.com

We propose two novel model architectures for computing continuous vector repre-
sentations of words from very large data sets. The quality of these representations
is measured in a word similarity task, and the results are compared to the previ- Abstract
ously best performing techniques based on different types of neural networks. We
observe large improvements in accuracy at much lower computational cost, i.e. it

takes less than a day to learn high quality word vectors from a 1.6 billion words The dominant sequence transductiop models are based on complex recurrent or
data set. Furthermore, we show that these vectors provide state-of-the-art perfor- convolutional neural networks that include an encoder and a decoder. The best
mance on our test set for measuring syntactic and semantic word similarities. performing models also connect the encoder and decoder through an attention

mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions

1 Introduction entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
Many current NLP systems and techniques treat words as atomic units - there is no notion of similar- less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-

ity between words, as these are represented as indices in a vocabulary. This choice has several good

reasons - simplicity, robustness and the observation that simple model.s trained on huge amounts of ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
data outperform complex systems trained on less data. An example is the popular N-gram model

used for statistical language modeling - today, it is possible to train N-grams on virtually all available our model establishes a new single-model state—of—the—art BLEU score of 41.8 after
data (trillions of words [3]). training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

to-German translation task, improving over the existing best results, including

However, the simple techniques are at their limits in many tasks. For example, the amount of
relevant in-domain data for automatic speech recognition is limited - the performance is usually
dominated by the size of high quality transcribed speech data (often just millions of words). In
machine translation, the existing corpora for many languages contain only a few billions of words
or less. Thus, there are situations where simple scaling up of the basic techniques will not result in

any significant progress, and we have to focus on more advanced techniques. “Equal contribution..L.isting ordc?r is rgndom. J akol? proposed‘ replacing RNNs with self-attention and started

. ' ' . . _ . . the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
With progress of machine learning techniques in recent years, it has become possible to train more has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
complex models on much larger data set, and they typically outperform the simple models. Probably attention and the parameter-free position representation and became the other person involved in nearly every

the most successful concept is to use distributed representations of words [10]. For example, neural

detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and
network based language models significantly outperform N-gram models [1, 27, 17].

tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and

1.1 Goals of the Paper implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.
The main goal of this paper is to introduce techniques that can be used for learning high-quality word " Work performed while at Google Brain.

vectors from huge data sets with billions of words, and with millions of words in the vocabulary. As
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far as we know, none of the previously proposed architectures has been successfully trained on more
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Abstract

We propose two novel model architectures for computing continuous vector repre-
sentations of words from very large data sets. The quality of these representations
is measured in a word similarity task, and the results are compared to the previ-
ously best performing techniques based on different types of neural networks. We
observe large improvements in accuracy at much lower computational cost, i.e. it
takes less than a day to learn high quality word vectors from a 1.6 billion words
data set. Furthermore, we show that these vectors provide state-of-the-art perfor-
mance on our test set for measuring syntactic and semantic word similarities.

1 Introduction

Many current NLP systems and techniques treat words as atomic units - there is no notion of similar-
ity between words, as these are represented as indices in a vocabulary. This choice has several good
reasons - simplicity, robustness and the observation that simple models trained on huge amounts of
data outperform complex systems trained on less data. An example is the popular N-gram model
used for statistical language modeling - today, it is possible to train N-grams on virtually all available
data (trillions of words [3]).

However, the simple techniques are at their limits in many tasks. For example, the amount of
relevant in-domain data for automatic speech recognition is limited - the performance is usually
dominated by the size of high quality transcribed speech data (often just millions of words). In
machine translation, the existing corpora for many languages contain only a few billions of words
or less. Thus, there are situations where simple scaling up of the basic techniques will not result in
any significant progress, and we have to focus on more advanced techniques.

‘With progress of machine learning techniques in recent years, it has become possible to train more
complex models on much larger data set, and they typically outperform the simple models. Probably
the most successful concept is to use distributed representations of words [10]. For example, neural
network based language models significantly outperform N-gram models [1, 27, 17].

1.1 Goals of the Paper
The main goal of this paper is to introduce techniques that can be used for learning high-quality word

vectors from huge data sets with billions of words, and with millions of words in the vocabulary. As
far as we know, none of the previously proposed architectures has been successfully trained on more
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

*Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, impl 4, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was r ible for our initial codet and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.
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Abstract

We introduce a new language representa-
tion model called BERT, which stands for
Bidirectional Encoder Representations from
Transformers. Unlike recent language repre-
sentation models (Peters et al., 2018a; Rad-
ford et al., 2018), BERT is designed to pre-
train deep bidirectional representations from
unlabeled text by jointly conditioning on both
left and right context in all layers. As a re-
sult, the pre-trained BERT model can be fine-
tuned with just one additional output layer
to create state-of-the-art models for a wide
range of tasks, such as question answering and
language inference, without substantial task-
specific architecture modifications.

BERT is conceptually simple and empirically
powerful. It obtains new state-of-the-art re-
sults on eleven natural language processing
tasks, including pushing the GLUE score to
80.5% (7.7% point absolute improvement),
MultiNLI accuracy to 86.7% (4.6% absolute
improvement), SQuAD v1.1 question answer-
ing Test F1 to 93.2 (1.5 point absolute im-
provement) and SQuAD v2.0 Test F1 to 83.1
(5.1 point absolute improvement).

1 Introduction

Language model pre-training has been shown to
be effective for improving many natural language
processing tasks (Dai and Le, 2015; Peters et al.,
2018a; Radford et al., 2018; Howard and Ruder,
2018). These include sentence-level tasks such as
natural language inference (Bowman et al., 2015;
Williams et al., 2018) and paraphrasing (Dolan
and Brockett, 2005), which aim to predict the re-
lationships between sentences by analyzing them
holistically, as well as token-level tasks such as
named entity recognition and question answering,
where models are required to produce fine-grained
output at the token level (Tjong Kim Sang and
De Meulder, 2003; Rajpurkar et al., 2016).

There are two existing strategies for apply-
ing pre-trained language representations to down-
stream tasks: feature-based and fine-tuning. The
feature-based approach, such as ELMo (Peters
et al., 2018a), uses task-specific architectures that
include the pre-trained representations as addi-
tional features. The fine-tuning approach, such as
the Generative Pre-trained Transformer (OpenAl
GPT) (Radford et al., 2018), introduces minimal
task-specific parameters, and is trained on the
downstream tasks by simply fine-tuning all pre-
trained parameters. The two approaches share the
same objective function during pre-training, where
they use unidirectional language models to learn
general language representations.

We argue that current techniques restrict the
power of the pre-trained representations, espe-
cially for the fine-tuning approaches. The ma-
jor limitation is that standard language models are
unidirectional, and this limits the choice of archi-
tectures that can be used during pre-training. For
example, in OpenAl GPT, the authors use a left-to-
right architecture, where every token can only at-
tend to previous tokens in the self-attention layers
of the Transformer (Vaswani et al., 2017). Such re-
strictions are sub-optimal for sentence-level tasks,
and could be very harmful when applying fine-
tuning based approaches to token-level tasks such
as question answering, where it is crucial to incor-
porate context from both directions.

In this paper, we improve the fine-tuning based
approaches by proposing BERT: Bidirectional
Encoder Representations from Transformers.
BERT alleviates the previously mentioned unidi-
rectionality constraint by using a “masked lan-
guage model” (MLM) pre-training objective, in-
spired by the Cloze task (Taylor, 1953). The
masked language model randomly masks some of
the tokens from the input, and the objective is to
predict the original vocabulary id of the masked
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Abstract

Natural language understanding comprises a wide range of diverse tasks such
as textual entailment, question answering, semantic similarity assessment, and
document classification. Although large unlabeled text corpora are abundant,
labeled data for learning these specific tasks is scarce, making it challenging for
discriminatively trained models to perform adequately. We demonstrate that large
gains on these tasks can be realized by generative pre-training of a language model
on a diverse corpus of unlabeled text, followed by discriminative fine-tuning on each
specific task. In contrast to previous approaches, we make use of task-aware input
transformations during fine-tuning to achieve effective transfer while requiring
minimal changes to the model architecture. We demonstrate the effectiveness of
our approach on a wide range of benchmarks for natural language understanding.
Our general task-agnostic model outperforms discriminatively trained models that
use architectures specifically crafted for each task, significantly improving upon the
state of the art in 9 out of the 12 tasks studied. For instance, we achieve absolute
improvements of 8.9% on commonsense reasoning (Stories Cloze Test), 5.7% on
question answering (RACE), and 1.5% on textual entailment (MultiNLI).

1 Introduction

The ability to learn effectively from raw text is crucial to alleviating the dependence on supervised
learning in natural language processing (NLP). Most deep learning methods require substantial
amounts of manually labeled data, which restricts their applicability in many domains that suffer
from a dearth of annotated resources [61]. In these situations, models that can leverage linguistic
information from unlabeled data provide a valuable alternative to gathering more annotation, which
can be time-consuming and expensive. Further, even in cases where considerable supervision
is available, learning good representations in an unsupervised fashion can provide a significant
performance boost. The most compelling evidence for this so far has been the extensive use of pre-
trained word embeddings [10, 39, 42] to improve performance on a range of NLP tasks [8, 11, 26, 45].

Leveraging more than word-level information from unlabeled text, however, is challenging for two
main reasons. First, it is unclear what type of optimization objectives are most effective at learning
text representations that are useful for transfer. Recent research has looked at various objectives
such as language modeling [44], machine translation [38], and discourse coherence [22], with each
method outperforming the others on different tasks.! Second, there is no consensus on the most
effective way to transfer these learned representations to the target task. Existing techniques involve
a combination of making task-specific changes to the model architecture [43, 44], using intricate
learning schemes [21] and adding auxiliary learning objectives [50]. These uncertainties have made
it difficult to develop effective semi-supervised learning approaches for language processing.
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Abstract

We propose two novel model architectures for computing continuous vector repre-
sentations of words from very large data sets. The quality of these representations
is measured in a word similarity task, and the results are compared to the previ-
ously best performing techniques based on different types of neural networks. We
observe large improvements in accuracy at much lower computational cost, i.e. it
takes less than a day to learn high quality word vectors from a 1.6 billion words
data set. Furthermore, we show that these vectors provide state-of-the-art perfor-
mance on our test set for measuring syntactic and semantic word similarities.

1 Introduction

Many current NLP systems and techniques treat words as atomic units - there is no notion of similar-
ity between words, as these are represented as indices in a vocabulary. This choice has several good
reasons - simplicity, robustness and the observation that simple models trained on huge amounts of
data outperform complex systems trained on less data. An example is the popular N-gram model
used for statistical language modeling - today, it is possible to train N-grams on virtually all available
data (trillions of words [3]).

However, the simple techniques are at their limits in many tasks. For example, the amount of
relevant in-domain data for automatic speech recognition is limited - the performance is usually
dominated by the size of high quality transcribed speech data (often just millions of words). In
machine translation, the existing corpora for many languages contain only a few billions of words
or less. Thus, there are situations where simple scaling up of the basic techniques will not result in
any significant progress, and we have to focus on more advanced techniques.

‘With progress of machine learning techniques in recent years, it has become possible to train more
complex models on much larger data set, and they typically outperform the simple models. Probably
the most successful concept is to use distributed representations of words [10]. For example, neural
network based language models significantly outperform N-gram models [1, 27, 17].

1.1 Goals of the Paper

The main goal of this paper is to introduce techniques that can be used for learning high-quality word
vectors from huge data sets with billions of words, and with millions of words in the vocabulary. As
far as we know, none of the previously proposed architectures has been successfully trained on more
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

*Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, impl 4, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codet and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.

fWork performed while at Google Brain.
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Abstract

We introduce a new language representa-
tion model called BERT, which stands for
Bidirectional Encoder Representations from
Transformers. Unlike recent language repre-
sentation models (Peters et al., 2018a; Rad-
ford et al., 2018), BERT is designed to pre-
train deep bidirectional representations from
unlabeled text by jointly conditioning on both
left and right context in all layers. As a re-
sult, the pre-trained BERT model can be fine-
tuned with just one additional output layer
to create state-of-the-art models for a wide
range of tasks, such as question answering and
language inference, without substantial task-
specific architecture modifications.

BERT is conceptually simple and empirically
powerful. It obtains new state-of-the-art re-
sults on eleven natural language processing
tasks, including pushing the GLUE score to
80.5% (7.7% point absolute improvement),
MultiNLI accuracy to 86.7% (4.6% absolute
improvement), SQUAD v1.1 question answer-
ing Test FI to 93.2 (1.5 point absolute im-
provement) and SQuAD v2.0 Test F1 to 83.1
(5.1 point absolute improvement).

1 Introduction

Language model pre-training has been shown to
be effective for improving many natural language
processing tasks (Dai and Le, 2015; Peters et al.,
2018a; Radford et al., 2018; Howard and Ruder,
2018). These include sentence-level tasks such as
natural language inference (Bowman et al., 2015;
Williams et al., 2018) and paraphrasing (Dolan
and Brockett, 2005), which aim to predict the re-
lationships between sentences by analyzing them
holistically, as well as token-level tasks such as
named entity recognition and question answering,
where models are required to produce fine-grained
output at the token level (Tjong Kim Sang and
De Meulder, 2003; Rajpurkar et al., 2016).

There are two existing strategies for apply-
ing pre-trained language representations to down-
stream tasks: feature-based and fine-tuning. The
feature-based approach, such as ELMo (Peters
et al., 2018a), uses task-specific architectures that
include the pre-trained representations as addi-
tional features. The fine-tuning approach, such as
the Generative Pre-trained Transformer (OpenAl
GPT) (Radford et al., 2018), introduces minimal
task-specific parameters, and is trained on the
downstream tasks by simply fine-tuning all pre-
trained parameters. The two approaches share the
same objective function during pre-training, where
they use unidirectional language models to learn
general language representations.

We argue that current techniques restrict the
power of the pre-trained representations, espe-
cially for the fine-tuning approaches. The ma-
jor limitation is that standard language models are
unidirectional, and this limits the choice of archi-
tectures that can be used during pre-training. For
example, in OpenAlI GPT, the authors use a left-to-
right architecture, where every token can only at-
tend to previous tokens in the self-attention layers
of the Transformer (Vaswani et al., 2017). Such re-
strictions are sub-optimal for sentence-level tasks,
and could be very harmful when applying fine-
tuning based approaches to token-level tasks such
as question answering, where it is crucial to incor-
porate context from both directions.

In this paper, we improve the fine-tuning based
approaches by proposing BERT: Bidirectional
Encoder Representations from Transformers.
BERT alleviates the previously mentioned unidi-
rectionality constraint by using a “masked lan-
guage model” (MLM) pre-training objective, in-
spired by the Cloze task (Taylor, 1953). The
masked language model randomly masks some of
the tokens from the input, and the objective is to
predict the original vocabulary id of the masked
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Abstract

Natural language understanding comprises a wide range of diverse tasks such
as textual entailment, question answering, semantic similarity assessment, and
document classification. Although large unlabeled text corpora are abundant,
labeled data for learning these specific tasks is scarce, making it challenging for
discriminatively trained models to perform adequately. We demonstrate that large
gains on these tasks can be realized by generative | ining of a 1 model
on a diverse corpus of unlabeled text, followed by discriminative fine-tuning on each
specific task. In contrast to previous approaches, we make use of task-aware input
transformations during fine-tuning to achieve effective transfer while requiring
minimal changes to the model architecture. We demonstrate the effectiveness of
our approach on a wide range of benchmarks for natural language understanding.
Our general task-agnostic model outperforms discriminatively trained models that
use architectures specifically crafted for each task, significantly improving upon the
state of the art in 9 out of the 12 tasks studied. For instance, we achieve absolute
improvements of 8.9% on commonsense reasoning (Stories Cloze Test), 5.7% on
question answering (RACE), and 1.5% on textual entailment (MultiNLI).

1 Introduction

The ability to learn effectively from raw text is crucial to alleviating the dependence on supervised
learning in natural language processing (NLP). Most deep learning methods require substantial
amounts of manually labeled data, which restricts their applicability in many domains that suffer
from a dearth of annotated resources [61]. In these situations, models that can leverage linguistic
information from unlabeled data provide a valuable alternative to gathering more annotation, which
can be time-consuming and expensive. Further, even in cases where considerable supervision
is available, learning good representations in an unsupervised fashion can provide a significant
performance boost. The most compelling evidence for this so far has been the extensive use of pre-
trained word embeddings [10, 39, 42] to improve performance on a range of NLP tasks [8, 11, 26, 45].

Leveraging more than word-level information from unlabeled text, however, is challenging for two
main reasons. First, it is unclear what type of optimization objectives are most effective at learning
text representations that are useful for transfer. Recent research has looked at various objectives
such as language modeling [44], machine translation [38], and discourse coherence [22], with each
method outperforming the others on different tasks.! Second, there is no consensus on the most
effective way to transfer these learned representations to the target task. Existing techniques involve
a combination of making task-specific changes to the model architecture [43, 44], using intricate
learning schemes [21] and adding auxiliary learning objectives [50]. These uncertainties have made
it difficult to develop effective semi-supervised learning approaches for language processing.
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Abstract

Making language models bigger does not inherently make them better at following
a user’s intent. For example, large language models can generate outputs that
are untruthful, toxic, or simply not helpful to the user. In other words, these
models are not aligned with their users. In this paper, we show an avenue for
aligning language models with user intent on a wide range of tasks by fine-tuning
with human feedback. Starting with a set of labeler-written prompts and prompts
submitted through the OpenAl API, we collect a dataset of labeler demonstrations
of the desired model behavior, which we use to fine-tune GPT-3 using supervised
learning. We then collect a dataset of rankings of model outputs, which we use to
further fine-tune this supervised model using reinforcement learning from human
feedback. We call the resulting models InstructGPT. In human evaluations on
our prompt distribution, outputs from the 1.3B parameter InstructGPT model are
preferred to outputs from the 175B GPT-3, despite having 100x fewer parameters.
Moreover, InstructGPT models show improvements in truthfulness and reductions
in toxic output generation while having minimal performance regressions on public
NLP datasets. Even though InstructGPT still makes simple mistakes, our results
show that fine-tuning with human feedback is a promising direction for aligning
language models with human intent.

1 Introduction

Large language models (LMs) can be “prompted” to perform a range of natural language process-
ing (NLP) tasks, given some examples of the task as input. However, these models often express
unintended behaviors such as making up facts, generating biased or toxic text, or simply not following
user instructions (Bender et al., 2021; Bommasani et al., 2021; Kenton et al., 2021; Weidinger et al.,
2021; Tamkin et al., 2021; Gehman et al., 2020). This is because the language modeling objective

*Primary authors. This was a joint project of the OpenAl Alignment team. RL and JL are the team leads.
Corresponding author: lowe@openai . com.
TWork done while at OpenAl Current affiliations: AA: Anthropic; PC: Alignment Research Center.
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Abstract

Making language models bigger does not inherently make them better at following
a user’s intent. For example, large language models can generate outputs that
are untruthful, toxic, or simply not helpful to the user. In other words, these
models are not aligned with their users. In this paper, we show an avenue for
aligning language models with user intent on a wide range of tasks by fine-tuning
with human feedback. Starting with a set of labeler-written prompts and prompts
submitted through the OpenAI API, we collect a dataset of labeler demonstrations
of the desired model behavior, which we use to fine-tune GPT-3 using supervised
learning. We then collect a dataset of rankings of model outputs, which we use to
further fine-tune this supervised model using reinforcement learning from human
feedback. We call the resulting models InstructGPT. In human evaluations on
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our prompt distribution, outputs from the 1.3B parameter InstructGPT model are
preferred to outputs from the 175B GPT-3, despite having 100x fewer parameters.
Moreover, InstructGPT models show improvements in truthfulness and reductions
in toxic output generation while having minimal performance regressions on public
NLP datasets. Even though InstructGPT still makes simple mistakes, our results
show that fine-tuning with human feedback is a promising direction for aligning
language models with human intent.
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3. Coemster avec nos artlflces
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Charlie Chaplin, Les temps modernes, 1936



James Bridle - Autonomous Trap 001 - Magic Salt Circle - 14 mars 2017



A quoi sommes nous confrontés ?



Intelligence artificielle ?

Intelligence reconnue comme telle par des humains, et produite par des humains

o Spécialisée
e Intelligence artificielle faible

* Analogique

e Intelligence artificielle forte ou globale

* Indéependante

e Singularité

Boris Beaude - 01/10/2023 - CC-BY-SA



Anepicdramaof
adventure and exploration

Sous quel forme ?

Problématique de |'existence matérielle

e Androide / Humanoide
e Prob

ématique de I'anthropomorphisme et de la vallée de I'étrange...

REAL HUMANS

* Cyborg
e Prob

ématique du transhumanisme...

e Bot
e Prob

ématique de la matérialité distribuée non analogique .

y.
ex macHind
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Se rassurer des echecs ?



Pranav Dixit, Hands via Stable Diffusion, BuzzFeed, 31 janvier 2023



https://www.buzzfeednews.com/article/pranavdixit/ai-generated-art-hands-fingers-messed-up

Pranav Dixit, Hands via Stable Diffusion, BuzzFeed, 31 janvier 2023 & Boris Beaude via Midjourney - Prompt : Vibrant , Beautiful hand on a wooden table , Cinematic photography , --aspect 1:1 --v 5.2 - octobre 2023



https://www.buzzfeednews.com/article/pranavdixit/ai-generated-art-hands-fingers-messed-up
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table en bois ? », octobre 2023

7

une mailn posee sur une

Beautiful hand on a wooden table ... & Dall-E 3 - « Peux-tu faire une photographie d'

!

Vibrant

Boris Beaude via Midjourney - Prompt



Boris Beaude via Midjourney - Prompt : Vibrant , Beautiful hand'en a wooden table , Cinematic photography, ... & A beautiful hand on a wooden table , Sony a7R IV camera, Meike 85mm F1.8 lens , --aspect 1:1 --v 5.2 - octobre 2023



Boris Beaude via Midjourney - Prompt : A beautiful hand on a wooden table , Sony a7R IV camera, Meike 85mm F1.8 lens , --aspect 1:1 --v 5.2 - octobre 2023



2ra Spatial, 2023

opéra

VAN

Jason Matthew Allen via Midjourney and Gigapixel Al, Théatre D'



Jason Allen
Pueblo West

Théatre D'opéra Spatial

$750 KX (odonado Sax Bair

From Rachel Metz, Al won an art contest, and artists are furious, CNN, 3 septembre 2022



https://edition.cnn.com/2022/09/03/tech/ai-art-fair-winner-controversy/index.html

—————

Bas Korsten pour Microsoft, The next Rembrandt, a partir de 346 oeuves de Rembrandt, 13 Avril 2016



https://news.microsoft.com/europe/features/next-rembrandt/

£

TN T

DT Pl B W

=

Greg Rutkowski, Castle Defense, 2018
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Kashmir Hill, This Tool Could Protect Artists From A.l.-Generated Art That Steals Their Style, New York Time, 13/17 février 2023



Original artwork

Without cloak protection, Al generated art pieces mimicking the style

of Karla Ortiz

Without protection

With cloak protection, Al generated art pieces mimicking the style of
Karla Ortiz

J

' . (.j \é-; With protection

Kashmir Hill, This Tool Could Protect Artists From A.l.-Generated Art That Steals Their Style, New York Time, 13/17 février 2023



aligned similar in feature space
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Nightshade’s Poison data

Shawn Shan et al. (Ben Y. Zhao Team), Prompt-Specific Poisoning Attacks on Text-to-Image Generative Models, 20 octobre 2023


https://arxiv.org/pdf/2310.13828.pdf

aligned similar in feature space
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Shawn Shan et al. (Ben Y. Zhao Team), Prompt-Specific Poisoning Attacks on Text-to-Image Generative Models, 20 octobre 2023

A painting of a dog A photo of a BMW car



https://arxiv.org/pdf/2310.13828.pdf
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Shawn Shan et al. (Ben Y. Zhao Team), Prompt-Specific Poisoning Attacks on Text-to-Image Generative Models, 20 octobre 2023


https://arxiv.org/pdf/2310.13828.pdf

Proprietes intellectuelles

Proteger les auteurs ou la creation ?

Mesure de protection des auteurs

e Janvier 2023 : Getty Images poursuit Stability Al et Midjourney.

e Printemps 2023 : Stack Overflow, Reddit et Twitter change les conditions d'usage et le colt de leurs API

e Juillet 2023 : New York Times menace de poursuites les |IA génératives qui utilisent ses articles.

e Juillet 2023 : Sarah Silverman, Matthew Butterick, Paul Tremblay and Mona Awad poursuivent Open Al

* Aot 2023 : 535 médias (New York Times, Reuters, The Washington Post...) refusent 'usage de leurs article par ChatGPT/OpenAl.
e Septembre 2023 : Authors Guild (George R. R. Martin, John Grisham, Jodi Picoult and Jonathan Franzen...) poursuivent Open Al
e Octobre 2023 : Universal Music Group (UMG), Concord et ABKCO pour Anthropic pour les paroles.

Mesure de protection des utilisateurs
* Ao(t 2023 : Adobe protége ses utilisateurs de poursuites pour ses IA génératives
e Septembre 2023 : IBM protege ses utilisateurs de poursuites pour ses IA génératives

e Octobre 2023 : Google protéege ses utilisateurs de poursuites pour ses |A génératives

Pas de copyright pour les oeuvres générées par 1A

e Septembre 2023 : US Copyright Office a estimé que le Théatre D'Opéra Spatial n'était pas éligible a la protection du droit d’auteur

Boris Beaude - 01/10/2023 - CC-BY-SA
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ECONOMIE

Automobile

La Californie suspend les
véhicules autonomes de
Cruise

Aprés plusieurs incidents dans les rues de San Francisco, l’entreprise
Cruise a perdu son permis de faire rouler ses voitures sans chauffeur en
Californie.

Publié: 24.10.2023, 22h26 O3 2 R

Bardés de caméras et de lidars (des lasers de détection), les taxis électriques autonomes de Waymo (Google) et Cruise (photo)
ont investi San Francisco depuis 'année derniere.
Getty Images via AFP



Qu’est qu'une voiture autonome ?

* Un voiture (mecanique)

* Des capteurs (sens)

* Des logiciels (apprentissage, pilotage...) locaux et distribués
* Une infrastructure informatique locale et distribuée

* De l'apprentissage (des heures de conduite)

* Des entreprises et des employés

* Des investissements et des investisseurs

* Des testeurs et des utilisateurs

* Des représentations

* Des réglementations




Plus géneralement ?



Coexister avec nos artifices ?
* Quiles concoit ?
* Quilesimplémente ?
* Qui en supervise l'apprentissage ?
* Quilesvend?
* Qui les utilisent ?
e Quien tire un profit ?
e Quitravaille ?

* Quilesrégule?

Boris Beaude - 01/10/2023 - CC-BY-SA



Quels enjeux sociaux et politiques ?

e | es biais structurels - justice, ressources humaines, assurances, crédits...
* Latransparence - interprétation, dépendance, responsabilité

e |e travail dissimulé - rémunération, conditions, traumatismes. ..

e ['environnement - énergie, CO2, terres rares, ...

* La propriété intellectuelle - création, innovation, rémunération. .

e La concentration du pouvoir - commercial et géopolitique

* La vie privee - reconnaissance faciale, traces numériques d'usage...

* La manipulation - addiction, désinformation. ..

e Laformation et le travail - apprentissages, métiers, rémunérations. ..

Boris Beaude - 01/10/2023 - CC-BY-SA



De quoil avons nous peur ?
* Que des personnes soient tuées ?
e D'étre tue?
o D'étre remplacable ?
e D'étre discriminé ?
* De ne plus avoir de travail ?
* De ne plus avoir de revenus ?
* Que cela ne profite qu‘a certains ?

* Que lesinégalités s'accroissent ?

Boris Beaude - 01/10/2023 - CC-BY-SA



La peur de 'IA...
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La peur de I'IA...

la peur de nos artifices...

Boris Beaude - 01/10/2023 - CC-BY-SA



La peur de I'IA...

la peur de nos artifices...

... n’est que la peur de 'inconnu

Boris Beaude - 01/10/2023 - CC-BY-SA



La peur de I'IA...

la peur de nos artifices...

... ’est que la peur de I'inconnu

... assoclee a la peur de nous-memes

Boris Beaude - 01/10/2023 - CC-BY-SA



[’avenir de I’'IA...

...est encore a inventer
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[’avenir de I’'IA...
..est encore a inventer
Il est technique...

... et politique
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Merci pour votre attention

Boris Beaude

Université de Lausanne
Laboratoire d’étude des sciences et des techniques

Courriel : Boris.Beaude@unil.ch

Site : http://www.beaude.net/boris/

Twitter : @nofluxin
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