Four years after the original Nature paper was published, Nature News had sad tidings to convey: the latest flu outbreak had claimed an unexpected victim: Google Flu Trends. After reliably providing a swift and accurate account of flu outbreaks for several winters, the theory-free, data-rich model had lost its nose for where flu was going. Google’s model pointed to a severe outbreak but when the slow-and-steady data from the CDC arrived, they showed that Google’s estimates of the spread of flu-like illnesses were overstated by almost a factor of two. The problem was that Google did not know – could not begin to know – what linked the search terms with the spread of flu. Google’s engineers weren’t trying to figure out what caused what. They were merely finding statistical patterns in the data. They cared about ­correlation rather than causation. This is common in big data analysis. Figuring out what causes what is hard (impossible, some say). Figuring out what is correlated with what is much cheaper and easier. That is why, according to Viktor Mayer-Schönberger and Kenneth Cukier’s book, Big Data, “causality won’t be discarded, but it is being knocked off its pedestal as the primary fountain of meaning”. But a theory-free analysis of mere correlations is inevitably fragile. If you have no idea what is behind a correlation, you have no idea what might cause that correlation to break down. One explanation of the Flu Trends failure is that the news was full of scary stories about flu in December 2012 and that these stories provoked internet searches by people who were healthy. Another possible explanation is that Google’s own search algorithm moved the goalposts when it began automatically suggesting diagnoses when people entered medical symptoms.